
G

N

R

I

CQ1

a

K
b

c

d

a

A
R
R
A

K
P
M
R
M
G
C
E

C

v
(

m
n
o

i
TQ2

L
(

0
h

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
ARTICLE IN PRESS Model

BR 1820 1–7

Neuroscience and Biobehavioral Reviews xxx (2013) xxx– xxx

Contents lists available at ScienceDirect

Neuroscience  and  Biobehavioral  Reviews

j ourna l ho me pa ge: www.elsev ier .com/ locate /neubiorev

eview

nto  the  groove:  Can  rhythm  influence  Parkinson’s  disease?�

ristina  Nombelaa,  Laura  E.  Hughesb,  Adrian  M.  Owenc,d, Jessica  A.  Grahnc,d,∗

Clinical Neuroscience Department, Cambridge Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, United
ingdom
MRC-Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
The Brain and Mind Institute, Natural Sciences Building, The University of Western Ontario, London, Ontario N6A 5B7, Canada
Department of Psychology, University of Western Ontario, London, Ontario N6A 5B7, Canada

 r  t i  c  l  e  i  n  f  o

rticle history:
eceived 13 April 2012
eceived in revised form 17 July 2013
ccepted 7 August 2013

eywords:

a  b  s  t  r  a  c  t

Previous  research  has  noted  that  music  can  improve  gait  in  several  pathological  conditions,  including
Parkinson’s  disease,  Huntington’s  disease  and  stroke.  Current  research  into  auditory-motor  interactions
and  the  neural  bases  of musical  rhythm  perception  has  provided  important  insights  for  developing
potential  movement  therapies.  Specifically,  neuroimaging  studies  show  that  rhythm  perception  acti-
vates  structures  within  key  motor  networks,  such  as  premotor  and  supplementary  motor  areas,  basal
ganglia  and the  cerebellum  –  many  of  which  are  compromised  to varying  degrees  in  Parkinson’s  disease.
arkinson’s disease
usic

hythm
otor training
ait
adence

It  thus  seems  likely  that  automatic  engagement  of  motor  areas  during  rhythm  perception  may  be the
connecting  link  between  music  and  motor  improvements  in  Parkinson’s  disease.  This review  seeks  to
describe  the link,  address  core  questions  about  its underlying  mechanisms,  and  examine  whether  it can
be  utilized  as a  compensatory  mechanism.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
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“Every disease is a musical problem; every cure is a musical other complex types of animal movement enable efficient explo-
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solution” (Novalis).

In the seventeenth century, the English physician William Har-
ey described animal movement as “the silent music of the body”
Harvey, 1627–1959). Walking, swimming, crawling, flying, and
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ration of different habitats, and although each is an inherently
distinctive method of locomotion, all share a natural equipoise and
fluency enabling swift sensorimotor responses to the environment.
This smooth, graceful, “melodic” flow of movement is compromised
in patients with Parkinson’s disease.

One of the cardinal symptoms of Parkinson’s disease (PD)
is diminished ability in walking or gait. Patients demonstrate
difficulty regulating stride length (Morris et al., 1996), reduced
velocity, ‘freezing’ of gait and increased cadence or step rate (as
demonstrated in Fig. 1) (Knutsson, 1972). Despite the success of
pharmacological therapies in ameliorating some features of PD, gait
ythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. (2013),

deficits can be resistant to medication and over time become one
of the most incapacitating symptoms (Blin et al., 1990).

One origin of gait impairment is deficient internal timing, the
mechanism that precisely times and coordinates every movement
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ig. 1. Schematics of various gait parameters in PD patients with and without rhyth
y  short stride, high cadence, and asymmetry of the steps, which are not synchron
eats,  with longer stride length, lower cadence, and more symmetrical steps, typica

f our body (Jones et al., 2008; Wearden et al., 2008). In PD, the
rregular timing of walking pace suggests a disturbance of coordi-
ated rhythmic locomotion (Ebersbach et al., 1999; Skodda et al.,
010; Thaut et al., 2001). Music rehabilitation program make use
f acoustic stimuli that enhance the connection between rhyth-
ical auditory perception and motor behaviour (Thaut, 2005),

nd aim to elicit sustained functional changes to movement in
atients, improving quality of life and reducing reliance on medi-
ation (Rochester et al., 2010b). Although the beneficial effects of
usic on gait in PD were initially reported some years ago (Miller

t al., 1996; Thaut et al., 1996), more recent work has used music to
omplement pharmacological therapy. A number of studies have
emonstrated that musical rhythm can improve gait and there is
eneral agreement about the promising value of music therapy
n PD (Arias and Cudeiro, 2008; Fernandez del Olmo and Cudeiro,
003; Lim et al., 2005; Rochester et al., 2009; Satoh and Kuzuhara,
008; Thaut and Abiru, 2010).

However, the scientific basis for the effects of music and rhythm
n gait needs reviewing. A precise description of how music influ-
nces motor function is essential for designing effective therapeutic
rogrammes in PD. Furthermore, alternative measures, such as
eurosurgical treatments, are not suitable for all patients, are
xpensive and may  result in additional complications, which make
heir application or widespread use challenging. Additionally, phar-

acological therapy does not solve gait problems in the long term.
fter years of examining the effectiveness of rhythm on PD, it is now
ecessary to discuss: (1) what makes rhythm effective, (2) what
ther tools, such as neuroimaging, have added to current music-
otor knowledge and, (3) which questions remain unanswered

egarding motor rehabilitation for PD. In this review we  discuss the
ffects of music on movement, provide an explanatory framework
f the neural mechanisms that underlie the processing of musi-
al rhythm, describe how rhythm triggers the motor network, and
ink this evidence to different Neurological Music Therapies (NMT)
ssayed to date.

. Why  is rhythmically modulated sound a good
Please cite this article in press as: Nombela, C., et al., Into the groove: Can rh
http://dx.doi.org/10.1016/j.neubiorev.2013.08.003

herapeutic key for tuning motor function in PD?

The improvement of patients’ gait in the presence of exter-
al regulatory rhythmical stimuli has been known for over forty
trainment. The top section depicts a walking pattern before training, characterized
ith the music beats. The lower section shows entrainment of gait to the rhythmic

more stable gait.

years: early studies described functional connections between the
auditory and motor system (Rossignol and Jones, 1976). Years
later, Thaut and colleagues described how rhythmical auditory
stimulation could influence the motor system (through muscle
entrainment to auditory stimuli) in PD patients, improving gait
parameters such as speed, cadence and stride length (Thaut et al.,
1996). These findings were confirmed by other studies (Hurt et al.,
1998; McIntosh et al., 1997; Miller et al., 1996; Thaut et al., 2001)
that showed that beneficial effects on walking speed persist (albeit
briefly) even after stimulus presentation has stopped (McIntosh
et al., 1998; Nieuwboer et al., 2009a).

A systematic review (Lim et al., 2005) of the use of rhythmic
stimuli in PD supports the effectiveness of auditory stimulation
compared to other types of stimulation such as visual, somatosen-
sory (tactile), or combined auditory and visual cues. Studies using
auditory cues provided reliable evidence for improved walking
speed, stride length and cadence. Although both visual and auditory
stimuli may  improve gait in PD (Lim et al., 2005), the characteristics
of the human auditory system make it a better therapeutic target for
two main reasons: (i) reaction times for auditory cues are 20–50 ms
shorter than for visual or tactile cues; (ii) the auditory system has a
strong bias to detect temporal patterns of periodicity and structure,
compared to other sensory systems (Thaut et al., 1999a).

Temporal patterns, or timing mechanisms, are necessary for
coordinating precise and structured movements (e.g. handwriting,
typing, talking, and walking). In pathological conditions, if faulty
timing processes lead to impaired motor performance, musical
rhythm could be used to influence the motor system: The temporal
sensitivity of the auditory system in combination with the strong
temporal characteristics of music (rhythm) can potentially provide
a regularizing temporal input to the motor system. Most NMTs have
used a strong ‘beat’ to help initiate movement. A beat is a series of
regular, recurring acoustical events. Phenomenologically, beat (or
pulse) can be considered a percept; “a response to patterns of tim-
ing and (depending on the theorist) stress in the acoustic rhythm”
(p. 190) (Large, 2008) which generates a strong temporal expecta-
tion of subsequent beats. Although the beat is initially derived from
ythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. (2013),

the auditory stimulus, rhythm can also induce an internally gener-
ated sense of beat and once the pattern has been established it can
continue in the mind of the listener even when the rhythm pauses
(Benjamin, 1984; Lerdahl, 1983; Palmer and Krumhansl, 1990). The
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rocess of synchronizing endogenous sensations of beat with an
xternal rhythm of movement is termed entrainment (Fig. 1).

. How does music facilitate movement?

Entrainment constitutes the basis of therapeutic music pro-
rammes, because a rhythmically structured sound pattern (such
s a simple dance tune) creates an anticipatory template of a time
equence marked by beats, which can be used as a continuous
eference to map  movements. This rhythmical auditory structure
ay  facilitate movement by enabling the timing of muscle acti-

ation to synchronize to the temporal structure of beats in the
ound pattern. Neural connections between the auditory and motor
ystems could explain this facilitation. Sounds can exert an influ-
nce on the motor pathway, via reticulospinal connections, which
rime and alter timing of spinal motor neuron activity (Paltsev and
lner, 1967; Rossignol and Jones, 1976). Connections between the
uditory and motor systems have been described along the phylo-
enetic scale (from fishes to mammals, Mirjany et al., 2011) and are
sed to explain the ‘auditory startle reflex’ (Lee et al., 1996), a very
apid behavioural response to sudden sounds. In particular, animal
odels have been used to examine the neural pathways facilitating

his fast response. Double-labelling experiments in rats (Nodal and
opez, 2003) demonstrate that cochlear root neurons (CRNs) in the
uditory nerve project bilaterally to sensorimotor paths, includ-
ng synapsing on reticulospinal neurons, which could constitute
ne of the shortest possible circuits for the auditory startle reflex
Lee et al., 1996). In this context, sound can directly increase the
xcitability of the spinal motor neurons, thereby reducing the time
equired for the muscle to respond to a given motor command.
dditional evidence from other species indicates the consistency
f motor-auditory connections: in monkeys direct projections from
he auditory cortex to putamen are described (de la Mothe et al.,
006). Empirical testing is still required to further understand how
hythm might facilitate regular motor movements.

In addition to animal models, connections between the audi-
ory and motor systems, in humans have also been described.
euroimaging studies have examined perceptual and motor syn-
hrony, revealing increased coupling of neural activity between
uditory and premotor cortex during rhythm processing (Chen
t al., 2006; Grahn and Rowe, 2009), even at a pre-attentive level
Tecchio et al., 2000). Critically, brain areas involved in rhythm pro-
essing are closely related to those which subserve movement,
uch as the premotor cortex, supplementary motor area (SMA),
erebellum and basal ganglia (Bengtsson et al., 2009; Chen et al.,
008; Grahn and Brett, 2007; Lewis et al., 2003; Mayville et al.,
001; Schubotz and von Cramon, 2001; Ullen and Bengtsson, 2003).
he basal ganglia, particularly the putamen, is involved with the
equencing of rhythmic events (McIntosh et al., 1997) and may
nable ‘feeling the beat’ (Grahn and Rowe, 2009). The cerebellum,
lso implicated in sensorimotor associations, may  control rhythmic
uditory-motor synchronization by monitoring rhythmic patterns
nd adjusting behaviour to changing tempos (Bijsterbosch et al.,
011; Thaut et al., 2009). This sensory-motor coupling, in which
uditory information drives motor action, has been described in
ealthy volunteers (Chen et al., 2008) and seems to be functional

n neurodegenerative diseases such as PD (Miller et al., 1996) and
untington’s disease (Thaut et al., 1999b), as well as in patients
ith stroke (Thaut et al., 2007, 1997) and traumatic brain injury

Hurt et al., 1998).
Please cite this article in press as: Nombela, C., et al., Into the groove: Can rh
http://dx.doi.org/10.1016/j.neubiorev.2013.08.003

. How are timing mechanisms affected in PD?

Synchronization of movement with rhythm requires contin-
ous entrainment and discrete error correction. This process
 PRESS
avioral Reviews xxx (2013) xxx– xxx 3

improves gradually with practice, becoming automatic (Repp,
2010). Parkinson’s disease patients experience difficulty in exe-
cuting automatized movements (Rochester et al., 2010a), such as
walking, that are related to dopaminergic function. During healthy
motor performance, the basal ganglia and SMA  establish a func-
tional loop that maintains adequate preparation for sequential
movements. The SMA  prepares for predictable forthcoming move-
ment, keeping a “readiness” state. Once the movement starts, the
SMA  readiness activity stops. This cycle engages with basal gan-
glia discharges after each sub-movement within an automatized
sequence (Mushiake et al., 1990). The loop requires an internal cue
to coordinate the cycle. However, in PD this internal cue is impaired,
delayed, or missing.

In healthy adults, accurate temporal processing relies on a com-
plex network that includes the putamen, and other structures
within the basal ganglia that depend on dopaminergic innerva-
tion (which is severely depleted in PD). In addition, other areas are
implicated in timing, including the inferior parietal cortex, cerebel-
lar vermis, anterior and posterior cerebellar hemispheres (Thaut,
2003), SMA, pre-SMA, and premotor cortex (Lewis and Miall, 2003;
Wiener et al., 2011). During the initial stages of the disease, these
areas may  provide compensatory assistance to the basal ganglia
in response to auditory cues (Eckert et al., 2006; Lewis et al.,
2007). In accordance with this idea, a dedicated temporal process-
ing network has been described by Kotz and Schwartze (Kotz and
Schwartze, 2010, 2011). This subcortico-thalamo-cortical network
includes the cerebellum, basal ganglia, pre-SMA and SMA, which
are important for implementing sequential actions. These areas are
differentially affected during the neurodegenerative process in PD:
at a preclinical stage, hyperactivity in the pre-SMA during action
sequencing may  be a compensatory mechanism for initial dysfunc-
tion, and this compensatory mechanism may  be initiated by the
cerebellum. In more advanced stages, a selective loss of pyramidal
neurons in the pre-SMA may  cause under activity in this region,
accompanied by poor temporal processing (Kotz and Schwartze,
2011). Neurological motor therapies try to strengthen alternative
pathways based on existing connections. The development of com-
pensatory mechanisms for impaired motor loops is the key for PD
motor rehabilitation.

4. How does rhythm facilitate timing mechanisms in PD?

The capacity of the auditory system to enhance motor per-
formance is used in neurological therapies (Thaut et al., 1999a)
for rehabilitation purposes (de Bruin et al., 2010). Different audi-
tory cues (for example, just a metronome tone, a metronome tone
embedded into music or just music), are combined with musical
parameters (such as rhythm or metre), to emphasize the regular
beats in the auditory rhythm. These well-defined sensory cues help
regulate timing and pace in walking (Thaut et al., 2001). These cues
may  also act as an internal clock that helps to regulate the defi-
cient internal timing and rhythm formation processes in PD (Pastor
et al., 1992). Music training programmes can be effective in PD,  as
patients are able to identify simple rhythms (Skodda et al., 2010),
although they may  be impaired at discriminating rhythm changes
(Grahn, 2009; Grahn and Brett, 2009). In addition, they do not gen-
erally report difficulty in sensing a regular beat or enjoying music
(Nombela et al., 2013). One issue in determining how NMT  helps
patients is an apparent paradox between neuroimaging and patient
studies. Previous fMRI work has shown that the putamen responds
to rhythmic stimuli that induce a sense of beat (Grahn and Brett,
ythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. (2013),

2007; Grahn and Rowe, 2009). However the putamen is thought to
be one of the most affected regions in PD (Kish et al., 1998), which
invites the question: how can rhythm improve movement in these
patients?
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Fig. 2. Auditory-motor action coupling schema. The schema represents how cue-
ing  benefits may  be associated with the activation of cerebellum-thalamic-cortical
circuitry. According to sensorimotor synchronization studies using neuroimaging
studies comparing pre and post-therapy, external vs. internal cueing may  use dif-
ferent pathways to reach the same key areas. This schema is based on RESCUE
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Box 1: Example of a Rhythmic Auditory Stimulation
(RAS) program (Thaut et al., 1996)
One example of a typical Rhythmic Auditory Stimulation (RAS)
protocol [59]:
Baseline pre-training measures (without auditory rhythmical
stimulation): velocity, stride length, step cadence and elec-
tromyography activation pattern for the gastrocnemius and
tibialis anterior muscles. Instructions are to walk at usual pace.
1st training week: Patients walk on a flat surface listening to
music in which the beat has been emphasized. Three different
tempos are used: music is presented at the patients’ normal
pace (“normal rate”), between 5% and 10% faster than nor-
mal  (“quick rate”) and 15–20%faster than normal (“fast rate”).
The music type may  be selected from four short instrumental
music pieces (e.g. folk, classical, jazz, country). Instructions are
to walk in time with the beat.
2nd training week: Each tempo becomes 5–10% faster than
previous week.
3rd training week: Each tempo becomes 5–10% faster than pre-
vious week.
Pre-training measures are acquired again, without auditory
rhythmical stimulation. Instructions are to walk at usual pace.
In a past study, velocity increased by 25%, stride length by 12%
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onsortium references (Nieuwboer et al., 2009b). Pre-SMA: Pre-supplementary
otor area; SMA: Supplementary motor area; MI:  Primary motor area; PMA: Pre-
otor area; Th: Thalamus; Put: Putamen.

One potential method to stimulate the putamen could be music
s a provider of a strong rhythmical cue. This type of externally pro-
ided cue may  be used as a replacement to the ‘internal clock’ to
acilitate synchrony of movements (Fig. 2). Several imaging stud-
es have demonstrated that self-initiated or self-paced movements
re impaired in patients, with concomitant reductions in puta-
en  and related cortical and cortico-striatal activity (Hallett, 2008;
aslinger et al., 2001; Playford et al., 1992; Wu  et al., 2010). In con-

rast, externally paced movements in response to either a tone or
 visual cue do not show such severe impairments (Hughes et al.,
010; Jahanshahi et al., 1995). Extrinsic cues are known to facilitate
ovement (Hallett, 2008), and may  provide the input for sequential
ovements, such as stepping, by reducing the reliance on defi-

ient automatized processes, (Morris et al., 1996). Thus rhythmical
usic may  drive sensorimotor network activity, either by bypass-

ng or facilitating the impaired basal ganglia-SMA loop, enabling
mprovements in gait.

. Standardized neurological motor therapy in PD: RAS

Rhythmic Auditory Stimulation (RAS) is one of the earliest and
ost popular NMTs. It was designed to facilitate rehabilitation of
ovements that are intrinsically rhythmical (for example, gait).

herefore, the most prominent application of RAS is to gait dis-
rders, for example, in Parkinson’s patients (Freedland et al., 2002;
ieuwboer et al., 2007), stroke (Thaut et al., 1997) and traumati-
ally brain injured patients (Hurt et al., 1998). The effectiveness of
AS made it a model for subsequent programmes (Box 1). Typically,
AS utilizes simple metronome beats matched to the patient’s base-

ine gait. Beats can also be emphasized by embedding metronome
eats in a musical pattern to encourage rhythmic entrainment.
fter patients entrain their movement to the beat, the rhythm is

hen sped up from 5% to 10% over baseline to a pace still comfortable
or the patient. Theoretically, as patients practice walking at faster
ates, a general coordination of timing and sequencing of move-
ents would take place through the enhancement of motor system

unction (Thaut, 2005). Alternative versions of RAS have included
Please cite this article in press as: Nombela, C., et al., Into the groove: Can rh
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etronome sounds embedded in expert-selected (McIntosh et al.,
997) or patient-selected music (Thaut et al., 1996). Other pro-
rammes have combined auditory stimulation (metronome) with
dditional motor training, as in the Physical Rehabilitation Program
and step cadence by 10%. Shape variability and asymmetry
decreased in gastrocnemius and tibialis anterior muscles.

(PRP) (del Olmo et al., 2006) which reduced temporal variability
of gait. PRP consists of 20 sessions that synchronize gait to the
metronome tone, combined with gradually more complex upper
limb exercises. Further variations are based on music plus relax-
ing images and body expression in Active Music Therapy (AMT)
(Pacchetti et al., 2000). Finally, external cueing can be substituted
by internal generation of the rhythmical signals by internal, covert
singing (Satoh and Kuzuhara, 2008).

The positive effects of RAS and its subsequent variations are
improvements in gait velocity, cadence and stride length (Thaut
et al., 1996). It is more effective in patients ‘on’ their normal
dopaminergic medication than when ‘off’ medication, and can gen-
erate positive short-term carry-over effects on movement after
rhythmic cueing has stopped (McIntosh et al., 1998, 1997). Other
beneficial outcomes include increases in the symmetry of muscle
activation in legs and arms, as well as diminished timing variability
(Fernandez del Olmo and Cudeiro, 2003; Miller et al., 1996; Thaut
et al., 1998), both of which result in more stable walking (Thaut
et al., 1999a). There are very few studies comparing the effective-
ness of RAS based on individual variability in UPDRS scores (Lim
et al., 2005). Arias and Cudeiro reported benefits in all patients
in their study after RAS, but found that the most severe patients
benefited the most (Arias and Cudeiro, 2008), suggesting that RAS
efficacy is dependent upon individual characteristics.

The effect of auditory stimulation on ‘freezing’ in PD has also
been evaluated. Rhythm appears to positively affects gait: dur-
ing auditory stimulation, PD patients with more severe symptoms
(H&Y stage III) experienced significantly fewer and shorter freez-
ing episodes than before stimulation (Arias and Cudeiro, 2010) and
took longer steps than patients with lower UPDRS scores (Arias
and Cudeiro, 2008). However, patients with less severe symptoms
overall, but who  freeze, may  not benefit as much from RAS, and may
even experience stride length decreases (Willems et al., 2006).

Research in the field does not always support the benefits of
music training on gait. Negative effects of RAS were evident when
auditory cues were presented at rates of 20% slower than the pre-
ythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. (2013),

ferred gait, reducing temporal stability in both PD patients and
controls (del Olmo and Cudeiro, 2005; Ebersbach et al., 1999).
Plain metronome beats (60–150 beats per minute, bpm) not based
on the patient’s baseline cadence may  even decrease step length
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Table 1
Basic concept for RAS (Lerdahl and Jackendoff, 1983; Palmer and Krumhansl, 1990; London, 2004).

Concept Definition

Rhythm A pattern of durations or time intervals, delineated by the sequential onset of events in a stimulus sequence.
Inter-onset-intervals Time between the beginning of one time interval and the following one. IOI provides the duration of each

temporal interval in a rhythm
Beat  Equally spaced recurring saliences that derive from rhythm. Also called ‘pulse’ or ‘tactus’. Is spontaneously

perceived when listening to regular rhythm.
Cadence Number of steps per unit time.
Stride amplitude Step length. The distance travelled in a single step.
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Metre Repeating patterns of strong and
Pattern Temporal structure defined by th
Gait  The rhythmic alternation of the 

nd gait cadence when set too low (60 or 90 bpm) or too high
150 bpm) (del Olmo and Cudeiro, 2005; Howe et al., 2003). Sim-
lar impairments (decreased walking speed and step length) are
bserved in the absence of explicit instructions to synchronize
alking pace with the beat, listening to freely chosen music that
oes not control for metre, rhythm or rate (Brown et al., 2009),
nd combining music with other cues, such as tactile stimulation
Enzensberger et al., 1997). These negative effects may  be caused by
he diversion of attention to an additional task unrelated to walking,
hich increases the cognitive load (Brown et al., 2009; Rochester

t al., 2009). Directing attention specifically to the movements can
e facilitatory, possibly because this reduces the automaticity of
ctions, which is impaired in PD (Morris et al., 1996). However,
ven during dual tasks, RAS can have beneficial effects on walk-
ng (Rochester et al., 2005). Thus, when the intervention increases
emands or divides attention (either synchronizing gait to a non-
atural pace or adding cognitive demands to walking), it reduces
he therapeutic value of music-motor programmes.

Music interventions in PD alter activity in motor and tempo-
al processing networks. Fernandez del Olmo and Cudeiro (2003)
escribe the increased glucose uptake in the right anterior lobule of
he cerebellum and dentate nucleus as well as the right temporo-
arietal junction (involved in temporal encoding/decoding) after
usical rhythm therapy. According to the authors, increased activ-

ty in the cerebellum might mean access to an alternate pathway
o compensate for the damaged basal ganglia-SMA-prefrontal cor-
ex path. This hypothesis is supported by previous studies in which
Please cite this article in press as: Nombela, C., et al., Into the groove: Can rh
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xternally driven movements in PD were related to increased activ-
ty in the cerebellar-parietal-premotor cortex pathway (Debaere
t al., 2003).

able 2
he table shows the benefits associated to RAS variations (Metronome stimulation and 

etronome beats vs. music, which indicated that it is the metronome stimulation by its o
alk  40 m (Enzensberger et al., 1997; Lim et al., 2005; Arias and Cudeiro, 2008; Brown e

ernandez del Olmo and Cudeiro, 2003; Freedland et al., 2002; Ito, 2000; Ledger et al., 20

Metronome stimulation
Authors Stimulation 

Freedland et al. (2002) +10% respect to baseline 

Del  Olmo et al. (2003) Fixed frequency (100 bpm) 

Del  Olmo et al. (2005) 60, 90, 120 and 150 bmp  

Willems et al. (2006) +10%, +20%, −10%, −20% respect to baseline 

Arias & Cudeiro (2008) 70–110% respect to baseline 

Ledger et al. (2008) −10% respect to baseline 

Elston et al. (2010) Baseline 

Rochester et al. (2010) Baseline 

Lohnes et al. (2011) Baseline (+10%, −10%) 

Music stimulation
Thaut et al. (1996) Metronome pulse (60–120 bpm) embedded into 

McIntosh et al. (1997) Metronome pulse (baseline, +10%) embedded int
Ito et al. (2000) Metronome pulse embedded into music 

Brown et al. (2009) Preferred music 

de Bruin et al. (2010) Cadence-matched preferred music 
 beats in rhythm.
e between onsets of stimuli (such as tones, clicks, or other sounds).
and limbs in walking.

Immediate effects of entrainment also have been studied
through EMG, measuring the effect of metronome stimulation on
the activity of lower-leg muscles (tibialis anterioris and gastrocne-
mius muscles) in the control of walking movements and positioning
of the feet. The variability of measured motor parameters (cadence,
stride length and speed) significantly decreased, improving the pre-
cise timing of muscle activation (Fernandez del Olmo  and Cudeiro,
2003).

In addition to reduced variability of motor parameters, other
immediate effects of RAS include longer stride length (Freedland
et al., 2002), higher speed (Arias and Cudeiro, 2008) and normalized
cadence (Arias and Cudeiro, 2010). Original RAS program report
similar improvements (McIntosh et al., 1997; Thaut et al., 1996).
Surprisingly, previous studies have not reported significant dif-
ferences between the effect of a single training session and full
programmes (Rubinstein et al., 2002) although no specific com-
parative studies have been conducted (Table 1).

In summary, the results of RAS and equivalent programmes are
dependent on the stage of treated patients, the specific auditory
stimuli, and appropriate therapeutic procedures (del Olmo et al.,
2006). From a methodological point of view, however, all these
studies share the use of a clear and easily discernible beat as the
acoustic stimulus. When clear identification of the rhythmic stim-
ulus is not possible, (non-rhythmic cues) RAS may  not have any
positive effect or it may  even have detrimental effects on PD gait
(Georgiou et al., 1993; Ma  et al., 2009) (Table 2). 

In this review we have described several studies on RAS and
ythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. (2013),

the effect of different stimuli as cues for movement in PD patients.
What is still missing is information about how these improvements
can be prolonged. Future research could focus on how to tap into

Music stimulation). To our knowledge, just one study has evaluated the effect of
wn  that provides better results regarding the time and number of steps needed to
t al., 2009; de Bruin et al., 2010; del Olmo and Cudeiro, 2005; Elston et al., 2010;

08; Lohnes and Earhart, 2011; Rochester et al., 2010b).

Benefits

Cadence, step length
Variability reduction in EMG  parameters
Velocity (60, 90) cadence (150)
Step frequency (+10%, +20%) stride length
(−10%), speed (+10%)
Step amplitude stride time
Speed, stride length, cadence
PDQ-39 scpre
Speed, step length
No effect

preferred music Speed, stride length Cadence
o instrumental music Speed, stride length Cadence

Stride length, gait speed
No improvements
Speed, stride length Cadence

395

396

397

dx.doi.org/10.1016/j.neubiorev.2013.08.003
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he circuits underlying non-automatized movements, which can
ypass or stimulate the dysfunctional basal ganglia. These com-
ensatory mechanisms may  also mediate the improvements during
bserved musical rhythm training.

. Conclusions

NMT  relies on acoustic stimuli to potentiate the connection
etween auditory perception and movement, which is possible
ecause rhythm activates the neural circuits involved in motor
rocessing, and these neuroanatomical connections permit music
or rhythm) to act as a cue for movement. In Parkinson’s disease,
bserved improvements in gait are thought to be due to synchro-
izing movement to the temporal expectation of a regular beat,
eplacing the impaired internal timing function. The presence of
egular beats in auditory stimuli may  also increase activity in the
utamen and thus compensate for the lack of dopaminergic stim-
lation. This benefit is not only the improvement of general gait
atterns (including postural control), but also the ability to generate
omplex coordinated movement sequences combining upper and
ower limbs (Thaut and Abiru, 2010). However, rhythms should be
esigned effectively, as they appear to lose therapeutic value when
hey are not tuned to the individual’s pace, or when they become

ore cognitively demanding. Reticulo-spinal pathways along with
erebellar areas may  have a role in mediating the positive effect of
usic.
Future neurological music therapies for PD should be individu-

lly tailored, attending to the specific clinical features and stimulus
esponding of the individual. In our opinion, the long-term mod-
fication of motor patterns may  require persistent training under
onditions adapted for individual patients.
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